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Abstract. We study integrable boundary conditions for the supersymmetrict–J model of
correlated electrons which arise when combining static scattering potentials with dynamical
impurities carrying an internal degree of freedom. The latter differ from the bulk sites by allowing
for double occupation of the local orbitals. The spectrum of the resulting Hamiltonians is obtained
by means of the algebraic Bethe ansatz.

1. Introduction

Impurities in correlated quantum systems have attracted considerable interest recently. In
particular, in one spatial dimension exactly solvable models and powerful field-theoretical
methods have provided insights into the properties of local perturbations of ideal chain
systems [1–7]. Static perturbations such as scattering potentials have a profound effect on
the transport properties of quasi one-dimensional (1D) structures such as quantum wires.
Impurities with internal degrees of freedom, e.g. a localized magnetic moment in the Kondo
problem, may be screened due to resonances with the electrons in the 1D correlated host.

In the framework of the quantum inverse scattering method (QISM) [8] the construction
of integrable models for such systems is based on inhomogeneous vertex models constructed
from solutions to a Yang–Baxter equation (YBE). Such inhomogeneities were embedded
into periodic chains by Andrei and Johannesson for the Heisenberg model [9] and later into
various models including the supersymmetrict–J model of interacting electrons by various
authors [10–14]. A direct consequence of this way of construction is the lack of backscattering
at the impurities [15]. Consideration of such impurities in a more general field-theoretical
approach has led to the conclusion that the interactions in the integrable models are fine tuned
to a fixed point which is unstable under renormalization flow [4]. As a consequence, the
integrable inhomogeneities lack the characteristic properties of a generic potential scatterer in
a 1D system with repulsive interactions, which has been found to drive the open-chain fixed
point, leading to a vanishing of the conductivity [3].

This can be overcome by combination of these integrable inhomogeneities with a real
boundary. Again, the construction of such models is possible within the QISM from solutions
to the reflection equations (RE) [16, 17] imposing consistency conditions on the possible
boundary conditions for a given bulk system. For thet–J model the simplest such (c-number)
solutions of the RE correspond to boundary chemical potentials and boundary magnetic fields
respectively [18, 19]. Combining these boundary matrices with solutions of the YBE one
can derive dynamical boundary impurity models; Heisenberg models [20,21] and Kondo-type
impurities [1,22,23] coupled to correlated electron systems have been studied in this way.
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Here, we construct the most general boundary impurities that can be realized within this
approach by combination of the known static boundary fields for the supersymmetrict–J
model with a dynamical impurity allowing for double occupancy of the electronic orbital at its
site. This four-state impurity alone, has been studied previously for periodic chains and open
ones with reflecting ends [11, 12, 24]. The resulting boundary terms are characterized by the
boundary field and, in addition, by a real parameter characterizing the four-dimensional typical
representation of the graded Lie algebragl(2|1) realized on the Hilbert space of the impurity
and by its coupling strength to the host system which is controlled by a shift in the spectral
parameter of the corresponding vertex. Using both boundary chemical potentials and boundary
magnetic fields this leads to two three-parametric families of boundary terms. Further models
are obtained by application of the ‘projecting method’ introduced recently [25]. Finally, we
present the Bethe ansatz equations (BAE) determining the spectra of these impurity models.

2. Algebraic construction

Following [16, 17] the classification of integrable boundary conditions within the QISM is
based on representations of two algebrasT± defined in terms of REs. ForT− this equation
reads:

R12(λ− µ) 1
T−(λ)R21(λ +µ)

2
T−(µ) =

2
T−(µ)R12(λ +µ)

1
T−(λ)R21(λ− µ) (2.1)

with
1
T− = T ⊗ I and

2
T− = I ⊗ T †. The algebraT+ is related toT− by an automorphism.

Representations ofT± determine the boundary terms in the Hamiltonian at the left (right) end
of the chain. Since these can be chosen independently, it is sufficient to consider solutions of
(2.1) to obtain a classification of the possible boundary impurities.

The matrixR in (2.1) solves the quantum YBE:

R12(λ)R13(λ +µ)R23(µ) = R23(µ)R13(λ +µ)R12(λ) (2.2)

where the superscripts denote the spaces in the tensor productV1⊗V2⊗V3 in whichRij acts
nontrivially.

For thet–J model thisR-matrix is given by:

(R12(λ))
j1j2
i1i2
= λ

λ + i
δ
j1
i1
δ
j2
i2

+
i

λ + i
5
j1j2
i1i2

(2.3)

with the graded permutation operator5cd
ab = δda δbc (−1)[a][b] , [a] ∈ {0, 1} denoting the grading

of the basis states. Thec-number solutions of the RE (2.1) corresponding to thisR-matrix can
be classified [18], below we use the diagonal ones

K
p
− =

( 1
1
− pλ+i
pλ−i

)
Kh
− =

(− hλ+i
hλ−i

1
1

)
(2.4)

corresponding to a boundary chemical potentialp and a boundary magnetic fieldh (in
combination with a chemical potential), respectively [19].

To construct boundary impurities carrying internal degrees of freedom we combine the
matrices from (2.4) with an integrable impurity which has been considered previously in a
periodic chain [11,12]. In the QISM this impurity is characterized by the followingL-matrix:

L34(λ) = λ− i( α2 + 1)

λ + i( α2 + 1)
+

i

λ + i( α2 + 1)
L̃ L̃ =

 1− n↑ −S− Q↑
−S+ 1− n↓ Q↓
Q

†
↑ Q

†
↓ α + 2− n

 . (2.5)

† For thet–J model considered here, these tensor products carry a grading and we have to use a graded version of
the QISM. For details see, for example, [26].
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Here n = ∑
σ=↑,↓ nσ =

∑
σ c

†
σ cσ and ES = 1

2c
†
α Eσαβcβ are the electron number and

spin operators on the impurity site expressed in terms of canonical fermionic creation and
annihilation operators. TheQσ are the fermionic generators ofgl(2|1) in this representation
which can be expressed in terms of projection operators (the so-called ‘Hubbard operators’)
Xab = |a〉〈b| with a, b =↑,↓, 2, 0:

Qσ =
√
α + 1X0σ − 2σ

√
αX−σ2 (2.6)

with σ = ± 1
2 corresponding toσ =↑,↓.

L34 acts on a four-dimensional quantum space and satisfies the intertwining relation:

R12(λ− µ)(L34(λ)⊗ L34(µ)) = (L34(µ)⊗ L34(λ))R12(λ− µ). (2.7)

Following Sklyanin [17], operator-valued matrix solutions of the RE are obtained by ‘dressing’
a c-number solutionK−(λ) of the RE withL34, i.e. considering the productT−(λ) =
L34(λ + t)K−(λ)

(
L34(−λ + t)

)−1
in matrix space (a shiftt of the spectral parameterλ is

consistent with the intertwining relation (2.7)). To construct an integrable chain with this
impurity placed on site one, this reasoning is iterated with theL-operators for thet–J model,
i.e.Ln = R0n, n = 2, . . . , L resulting in

T−(λ) = LL(λ) . . .L2(λ)L34
1 (λ + t)K−(λ)(L34

1 (−λ + t))−1(L2(−λ))−1 . . . (LL(−λ))−1.

(2.8)

The integrable model is now defined through the transfer matrix

τ(λ) = str0[K+(λ)T−(λ)]. (2.9)

str0(M) =
∑

a(−1)[a]Maa is the (graded) supertrace taken in matrix space. Since the purpose
of this paper is the classification of integrable boundary terms obtained in this class we restrict
ourselves to the simplest case ofK+(λ) ≡ 1 as a representation of the algebraT+ which
corresponds to a reflecting left boundary of the chain. Then, the Hamiltonian is obtained by
differentiation of the transfer matrix with respect to the spectral parameter:

H ∝ i
∂

∂λ
τ(λ)|λ=0. (2.10)

This leads to the following Hamiltonian of the quantum chain

H = −P
( L−1∑
j=2

∑
σ

c
†
j,σ cj+1,σ + c†

j+1,σ cj,σ

)
P

+2
L−1∑
j=2

[
ESj ESj+1− njnj+1

4
+

1

2
(nj + nj+1)

]
+

4

4t2 + (α + 2)2
Hp,hb (2.11)

whereP projects out double occupancies on the bulk sites, andESj , nj are the electronic spin
and number operators on sitej defined as above. The boundary termsHb depend on the choice
of the boundary matrix, after a unitary transformationHpb is given by

Hpb = −p
(
t2 +

(α + 2)2

4

)
+ {1 +p(α + 1)}n1 +

{
1 +α + p

(
t2 +

α2

4

)}
n2

+{1 +pα}
{
2ES1ES2 − n1n2

2

}
+ p{n2 − 2}X22

1

−
√
α + 1t0{X↑02 X

0↑
1 +X↓02 X

0↓
1 + h.c.}

−√αt2{X↑02 X
↓2
1 −X↓02 X

↑2
1 + h.c.} (2.12)
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where t0 =
√
([1 + pα

2 ]2 + p2t2) and t2 =
√
([1 + p(α2 − 1)]2 + p2t2). Note that the

representation ofgl(2|1) entering (2.5) does allow for double occupancy on the first site.
Similarly, we obtain the following boundary operator when considering theKh

−-matrix:

Hhb = n1 + (α + 1)n2 − h(1 +α)n1↑ − h
(
t2 +

α2

4

)
n2↑

+(αh− 1)n1↑n2↓ − n1↓n2↑ + h(1− n2↑)X22
1

+
√
α(1 +h){X↓02 X

↑2
1 + h.c.} −

√
α + 1{X↓02 X

0↓
1 + h.c.}

−tc[
√
αX

↑0
2 X

↓2
1 +
√
α + 1X↑02 X

0↑
1 + S+

1S
−
2 + h.c.] (2.13)

with tc =
√
(1− αh

2 )
2 + t2h2.

The models constructed above can be solved using the algebraic Bethe ansatz. Starting
from the completely filled, fully polarized state, i.e. doubly occupied impurity site one and all
other sites are occupied by a spin-↑ electron, we find that the spectrum ofH is determined by
the solutions of the BAE:

Bhe
2(L−1)
1 (λk) =

Ms∏
j 6=k

e2(λk − λj )e2(λk + λj )
Mc∏
`=1

e−1(λk − ϑ`)e−1(λk + ϑ`)

×
Ms∏
j=1

e−1(ϑ` − λj )e−1(ϑ` + λj ) = Bp(ϑ`)eα(ϑ` + t)eα(ϑ` − t) (2.14)

whereen(x) = x+in/2
x−in/2,Mc = L + 1−Ne,Ms = L−N↑ and boundary phase shifts

Bh(λ) =
{

1 for K
p

−
−e−1− 2

h
(λ) for Kh

−

Bp(ϑ) =
{
−e 2

p
−2(ϑ) for K

p

−
1 for Kh

−.

(2.15)

The energy of the corresponding Bethe state is then given by the expression

E = Ep,hb + 2(L− 2)−
Ms∑
j=1

1

λ2
j + 1

4

(2.16)

with Epb = (4α + 8)/(4t2 + (α + 2)2) andEhb = (4α + 8)/(4t2 + (α + 2)2)− h.
As for the periodic and the opent–J model, the zero-temperature ground state and the

low-lying charged and magnetic excitations are characterized by real solutions for theλ and
ϑ rapidities of the BAE.

3. Projecting method

Recently, it has been realized that new integrable boundary Hamiltonians may be obtained after
fine tuning of the parameters characterizing the boundary and impurity, respectively [25] by
projection onto an invariant subspace. An important application of this procedure is a Kondo
spin coupled to thet–J model [22, 23, 27]. To apply the projecting method one has to find a
decomposition of the Hilbert space of the impurityH = H1⊕ H2 and fine tune the parameters
in T− such that one of the following conditions is satisfied (51,2 are projectors ontoH1,2)

51T−52 = 0 or 52T−51 = 0. (3.1)
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Starting fromK
p
−, we find that the decompositionH = {↑,↓, 0} ⊕ {2} is possible for

t = t̄ ≡ i( α2 − 1 + 1
p
); the resulting Hamiltonians do not lead to new models. ForH2(α, p, t̄),

the impurity is a scalar one and the model reduces to an opent–J model with boundary
chemical potential at site two. The other possible projection,H↑,↓,0(α, p, t̄), is a simple
reparametrization ofH↑,↓,0(α = 0, p, t).

Choosingt = t̃ ≡ i( α2 + 1
p
) the condition (3.1) is satisfied for the decomposition

H = {2,↑,↓} ⊕ {0}. AgainH0(α, p, t̃) is just an opent–J model with boundary chemical
potential at the second site. Projecting onto the second subspace, however, we find a two-
parametric Hamiltonian:

H2,↑,↓ = −(a + b + 2) +
(a + b + 2)2

a + b + 1
n1 +

a + b + 2

3 + 2a + b
n2

+
(a + 1)(a + b + 2)2

(a + b + 1)(3 + 2a + b)

{
2ES1ES2 − n1n2

2

}
+

(a + b + 2)3

(a + b + 1)(3 + 2a + b)
{n2 − 2}X22

1

− (a + b + 2)2

(a + b + 1)(3 + 2a + b)

√
ab{X↑02 X

↓2
1 −X↓02 X

↑2
1 + h.c.}. (3.2)

The HamiltonianH2,↑,↓ may be constructed with aid ofL34(α = −1) and choosing the
remaining two parameters ast = − i

2(a + b)/(a + b + 2) andp = (a + b + 2)/(3 + 2a + b).
This L-matrix corresponds to the one obtained by using the dual of the fundamental three-
dimensional representation of the algrbragl(2|1). This solution of the YBE has been used
in [28, 29] to construct periodict–J models with impurities and usualt–J sites, alternating.
Choosing eithera = 0 or b = 0 a further projection is possible:H = {2} ⊕ {↑,↓}. H2

corresponds to a boundary chemical potential at the second site. Substitutingb = − a
1+a in

Ha=0
↑,↓ , one obtainsHb=0

↑,↓ . The resulting HamiltonianHa=0
↑,↓ can be identified with a spin-1

2
Kondo impurity introduced in [22].

ConsideringKh
−, only one decompositionH = {2,↑}⊕ {0,↓} satisfying (3.1) is possible.

Choosingt = i( α2 − 1
h
) we find two new boundary Hamiltonians, namely

H2,↑ =
[

h2

(h + 1)(h(α + 1)− 1)

]{
n1 + (α + 1)(n2 − hn1↑) + n2↑

1− αh
h

+(αh− 1)n1↑n2↓ + h(1− n2↑)X22
1

}
+

√
αh2

h(α + 1)− 1
{X↓02 X

↑2
1 + h.c.} (3.3)

and

H↓,0 =
[

h2

(h + 1)(h(α + 1)− 1)

]{
n1 + (α + 1)n2 +

1− αh
h

n2↑ − n1↓n2↑

−
√
α + 1{X↓02 X

0↓
1 + h.c.}

}
. (3.4)

Both (3.3) and (3.4) resemble certain features of the Anderson model for a local orbital coupled
to a correlated host.

The BAE for the projected Hamiltonians coincide with the ones for the original model
(2.14), provided that the reference state used in their construction, i.e. the state|2〉 in the
impurity Hilbert space is not projected out. Hence, to obtain the spectrum ofH↓,0 one has to
use different BAE obtained for a suitable pseudo-vacuum. Alternatively, one may consider
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solutions of (2.14)after adding the complex solutions corresponding to bound states (see
e.g. [7,30]):

λ = i

(
1

2
+

1

h

)
and ϑ = i

h
. (3.5)

This results in the following set of BAE for for the Hamiltonian (3.4)

−e3+2/h(λk)e
2(L−1)
1 (λk) =

Ms∏
j 6=k

e2(λk − λj )e2(λk + λj )
Mc∏
`=1

e−1(λk − ϑ`)e−1(λk + ϑ`)

×
Ms∏
j=1

e−1(ϑ` − λj )e−1(ϑ` + λj ) = e2α−2/h(ϑ`)e2+2/h((ϑ`) (3.6)

whereMc = L − Ne andMs = L − 1− N↑. The energy of the corresponding Bethe state
with spectral parameters{λj } and{ϑ`} is given by

E = h

h(α + 1)− 1
+ 2(L− 2)−

Ms∑
j=1

1

λ2
j + 1

4

. (3.7)

4. Summary

Starting from a particular solution of the intertwining relation (2.7) built from a four-
dimensional representation of the graded Lie algebragl(2|1) and diagonalc-number solutions
(2.4) of the RE, we have constructed supersymmetrict–J models with integrable boundary
impurities of Anderson- or Kondo-type, i.e. with an internal degree of freedom. Due to non-
zero boundary potentials, the resulting boundary terms break the supersymmetry of the model;
the most general ones which can be constructed this way are given in equations (2.12) and
(2.13). The presence of the boundary allowed for fine tuning of these potentials to project the
model to a remaining invariant subspace. In most cases this projection led to models which had
been constructed directly before. The Anderson-type impurities described by equations (3.3)
and (3.4), however, are novel.

The spectra of these models have been obtained by means of the algebraic Bethe ansatz.
Furthermore, having the exact dependence of the ground state energy on the parameters defining
the impurity allows for the computation oflocal correlations which, usually, are not easily
accessible from the Bethe ansatz solution (see [12,20] for examples).
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[28] Abad J and Ŕıos M 1999J. Phys. A: Math. Gen.323535
[29] Links J and Foerster A 1999J. Phys. A: Math. Gen.32147
[30] Bed̈urftig G and Frahm H 1997J. Phys. A: Math. Gen.304139


